

H2020-NMBP-TR-IND-2018-2020 / H2020-NMBP-FOF-2019 (869963)

MERGING PROJECT

MANIPULATION ENHANCEMENT THROUGH ROBOTIC GUIDANCE AND INTELLIGENT NOVEL GRIPPERS

LESSONS LEARNED FROM COMPUTER VISION IMPLEMENTATIONS IN MERGING WORK CELLS

SENSORS:

- Time of Flight (ToF):
- Stereo
- Lidar
- Structural light

FEATURES:

- Resolution
- Dynamic Range
- Precision
- Working Range
- Field of View
- FPS

- Object Detection
- Semantic and Segmentation
- Image Classification
- Transformation and Morphology Algorithms
- 3D Reconstruction Algorithms
- Feature-Based Algorithms
- Interest Point Detection

3

When?

If it's necessary to provide the robot with an accurate location of the detections or when we share information between the cameras.

Intrinsic

It corrects imperfections that arise during the lens manufacturing process and during its installation in the camera.

Extrinsic:

It determines the relative position and orientation between multiple cameras or between a camera and a reference system in the real world.

- Eye to hand
- Eye in hand

• PEOPLE DETECTION

- **Objective**: Detect people and locate them in world coordinates
- **Sensors**: 2D camera, stereo vision.
- Calibration: YES.
- Limitations: Occlusions

tteract 🗥 Move Camera 🔲 Select 🕀 Focus Camera 🚥 Measure 🖉 2D Pose Estimate 🖉 2D Nav Coal 💡 Publish Point 🚸 🚥 🕷

European Commission

• Check the fabric's placement.

- **Objective**: Verify if the fabric is in the correct • position on the mold.
- Sensors: 2D camera.
- Calibration: no.
- **Limitations**: Issues with changes in lighting.

mascara

|6

Based on 3D geometric operations

- Edge Mold:
 - **Objective:** Detection of fabric presence in the mold closure.
 - Sensors: 3D camera.
 - Calibration: no.
 - **Limitations:** Accuracy of up to 1 mm. Possible failures with narrower fabrics.

Wrinkle detection:

- **Objective**: Calculate the movements that the robot must perform to stretch a fabric.
- Sensors: 3D camera.
- Calibration: yes.
- **Limitations**: problems with non plain fabric patterns

17

Stack

- **Objective:** Identify the grip points of the top fabric in the stack
- Sensors: 3D camera
- Calibration: yes.
- **Limitations**:Accuracy of up to 1 mm. Possible failures with narrower fabrics.

• Quality control:

- **Objective**: Determine the depth of the bra cups to ensure it is correct for the size.
- **Sensors**: 3D camera.
- Calibration: no.
- Limitations: wrinkles on the cups.

• Pouches detection

- **Objective:** Identify the grasping points and the orientation of the pouches
- Sensors: 2D camera
- Calibration: yes.

Not always the most popular solution is the one that fits the problem.

- Objective of the problem
- Execution frequency
- Available hardware
- Accuracy rate

